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Abstract. The current distribution in a parallel set of thin conducting sheets due to an external applied source
is investigated. All sheets are placed in one plane. The source, and all excited fields, are time-harmonic. The fre-
quency is low enough to allow for an electro quasi-static approximation (neglecting the displacement current). The
conducting sheets are infinitely long and the current is uniform in the longitudinal direction of the sheets. The
sheets have a thin rectangular cross-section, so thin that the current can be assumed uniform in the thickness-
direction. Hence, the current distribution only depends on the transverse coordinate. Due to the mutual induction
between the sheets, the current distribution over the width of the cross-section becomes non-uniform: it accumu-
lates at the edges of the sheets. It is especially this so-called edge-effect, and its dependence on the applied fre-
quency and the distances between the sheets, that is the aim of this investigation. From the Maxwell equations, a
set of integral equations for the current distribution in the sheets is derived. These integral equations are solved,
as far as possible by analytical means, by writing the current distribution in each sheet as a series of Legendre
polynomials. The general method is worked out for N (N ≥1) sheets, but explicit results are presented for N =1
and 3. It turns out that the edge-effect becomes stronger for increasing frequencies. For this solution, only a very
restricted number of Legendre polynomials are needed.
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1. Introduction

Magnetic Resonance Imaging (MRI) is a non-destructive way of scanning a human body for
medical diagnostics, but it can also be used in other applications (e.g. for the scanning of the
drying process in clay tiles). A general description of the process of MRI is presented in the
book by Vlaardingerbroek and Den Boer [1]. In an MRI scanner, the so-called main mag-
net produces a homogeneous static magnetic field. To enable the spatial information of MR
images, the magnetic field strength must show variation in space in a controllable manner.
Such variation is provided by gradient coils, producing linearly varying magnetic fields. These
gradient fields must be as linear as possible in the centre of the scanner with respect to spatial
variables.

The configuration of the gradient coil consists of a circular cylinder covered by a given
pattern of very thin conductors. The conducting sheets are of copper, having a finite resis-
tance. The sheet has a finite width and spirals in its length direction along the cylindrical sur-
face. The coil is excited by a given dynamic input current.

One of the major problems in the use of gradient coils is the interaction of the rapidly
fluctuating fields with other conducting structures in the MRI scanner including other parts
of the gradient coils. The interaction due to mutual induction causes non-uniform current dis-
tributions in the sheets. It turns out that, at sufficiently high frequencies, the current accumu-
lates at the edges of the sheets. This so-called edge-effect causes perturbations on the expected
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Figure 1. Configuration of a system of N infinitely long parallel sheets; cross-section in (x, y)-plane.

gradient field and, consequently, in the NMR-picture (“blurring”), and should therefore be
avoided as much as possible.

Due to the complexity of the geometry of the gradient coil we have simplified the prob-
lem considerably: the configuration we consider here consists of a set of N (N ≥ 1) parallel
conducting sheets of a narrow rectangular cross-section and of infinite length. We shall show
that this simplified configuration already reveals when, i.e., for which frequencies, edge-effects
occur, and how they are affected by the distance between the sheets. Moreover, the methods
developed here can, and will, also be applied to more general structures such as sets of par-
allel conducting rings on a cylindrical surface.

The longitudinal direction of the strips is taken in the z-direction, while the x-axis is in the
width-direction and the y-axis in the thickness-direction; see Figure 1. All sheets have thick-
ness 2h, but they may have different widths: the pth sheet (p ∈ [1,N ]) having width 2dp =
(bp−ap). The thickness of the sheets is always much smaller than their width. In the next sec-
tion, we shall show that we may assume the sheets to be infinitely thin in the y-direction. We
call such an infinitely thin sheet a strip. All strips are lying in one plane. These strips occupy
the surface S in Euclidean space IR3, described in Cartesian coordinates by

S = N∪
p=1

Sp, Sp={(x,0, z)∈ IR3 | x ∈ [ap,bp], ap<bp}. (1)

Through the sheets, an electric current is flowing in the longitudinal or z-direction. The
total current through a sheet, or through a group of sheets, is prescribed; the precise dis-
tribution of this current is the principal unknown of this article. Its determination, by ana-
lytical means as far as possible, is our main aim. The sheets are good conductors and the
current is time-harmonic. The frequency is small enough to allow for an electro quasi-static
approximation of the governing Maxwell equations. In this case, the current is uniform in the
z-direction.

The present paper is based on a postgraduate project devoted to the design of gradient
coils for MRI-scanners, performed at Philips Medical Systems, Best, The Netherlands, by the
first author [2]. This work is somewhat generalized here, in that it includes the possibility
of arbitrarily prescribing the source currents on (groups of) strips. In [3] and [4], the sec-
ond author has further developed the theory to more general structures such as sets of rings
or sets of rings combined with islands (having the shape of a part of a ring). In the lat-
ter structures, besides edge-effects, also self-eddies will occur. The design of gradient coils is
an important subject in the development of MRI-scanners (see e.g. [5,6]). Approaches using
stream functions to determine optimal surface structures have been reported by Peeren [7],
and Tomasi [8]. In [7], the optimal structure is related to a minimization of the total energy.
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In this approach, edge-effects are not taken into account. In [8], the current distribution is
discretized by use of one-dimensional wires.

In the mathematical description of dynamic current distributions through strip-like struc-
tures, aspects as skin depth, see e.g. Landau and Lifshitz [9, Section 46], and edge-effects
play an important role. In [10], the reduction of edge currents due to magnetic shielding is
simulated. Magnetic shielding is also considered in [11], in which current distributions, inclu-
sive eddy currents, in MRI-probes are computed. Another issue in gradient-coil design is the
reduction of noise. Some recent publications on acoustic control in gradient coils are e.g. [12,
13]. Other topics are peripheral nerve stimulation (PNS), see e.g. [14,15], and specific absorp-
tion rate (SAR), see e.g. [16,17]. Apart from gradient coils, strip-like structures also appear
as striplines in electromagnetic transmission lines used for the excitation of antennas, see e.g.
[18]. However, in contrast to the (quasi-static) radio-frequency range in which gradient coils
act (less than 103 Hz), the frequencies for antenna systems are very high (≈ 109 Hz), and in
the latter case the strips can be modelled as perfectly conducting. Whether a conducting strip,
dependent on the range of applied frequencies, can be considered as infinitely thin and/or per-
fectly conducting, is indicated by Bekers et al. [19].

In most of the aforementioned papers, results are obtained purely by numerical simula-
tions, whereas in the present paper we aim at an, analytical solution, for as far as that is
possible. This analytical solution, for as far as that is possible, leads to a Fredholm integral
equation of the second kind for the current distribution. This integral equation is solved using
Legendre polynomials. Abdou [20] also presents a method to solve Fredholm–Volterra inte-
gral equations with logarithmic singular kernels by means of Legendre polynomials.

In Section 2, we will derive an integral equation for the current distribution in the sheets
by applying the electromagnetic equations to the three-dimensional space containing the
strips. The situation for one strip will be analyzed in Section 3, while that for N strips will
be worked out in Section 4. Solutions and numerical results will be shown in Section 5. Sec-
tion 6 will present a survey of the conclusions and some recommendations for extending the
analysis to more realistic models for gradient coils.

2. Electromagnetic equations

The basic equations for our problem are the well-known Maxwell equations. Both the sheets
and the external region are assumed non-polarizable and non-magnetizable. Moreover, in the
conducting sheets Ohm’s law holds. We consider only time-harmonic electromagnetic fields,
i.e., fields that uniformly contain the term e−iωt , ω∈ IR+. Without further comment, this term
will be omitted in our equations: fields are only space-dependent and all time derivatives in
the Maxwell equations are replaced by the factor −iω. We assume that the frequency range is
restricted, in so far that an electro quasi-static approximation may be applied, implying that
the displacement current (i.e., the term ∂D/∂t in Ampere’s law) and the instationary term
∂ρ/∂t in the law of conservation of charge may be neglected. The result of the latter is a
divergence-free current in the sheets (i.e., ∇ ·J =0).

We denote by H the magnetic field strength, by E the electric field strength, and by J the
current density, satisfying Ohm’s law in the sheets. This leaves us with the following equations
for the unknowns E(x), H(x) and J(x):

∇ ×E = iωµH, ∇ ·E =0, (2)

∇ ×H =J, ∇ ·H =0, (3)
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and, moreover, in the sheets

∇ ·J =0, J =Js +σE. (4)

Here, µ=µ0 and σ are the permeability and conductivity, respectively, and Js is a prescribed
source current, see also (21). The second equation of (4) is Ohm’s law. The cross-sections of
the sheets in the (x, y)-plane all have a finite thickness 2h. However, we will approximate the
sheets by infinitely thin ones. This is allowed if the penetration depth δ of the surface current
in thickness-direction (where δ=√

2/µσω, see [9, Section 46], or [2]) is large compared to half
the thickness of the sheet, i.e., if

h

δ
=

√
h2

2
µσω�1, (5)

that is, for values of ω that are not too large.
For a copper sheet of the kind we intend to consider here the following numerical values

are typical:

2h=2·5×10−3 m, µ=4π ×10−7 H/m, σ =5·8×107 1/� ·m.

For frequencies of the order of ω=103 rad/sec, or less, this yields

δ≥5·21×10−3 m, (6)

which is large enough to justify the approximation leading to an infinitely thin sheet, which
hereafter will be called a strip (it can be shown that by this approximation we introduce an
error of 3% at the most see [2]).

In the model of a strip we replace the current density J (in A/m2) by the current per unit
of length in the width-direction j (in Amp/m), defined as

j=
h∫

−h
J dy. (7)

Since we consider sets of N individual strips, we denote the current in the pth strip (x ∈Sp,
conductivity σ =σp) by jp.

The approximation applied to strips simplifies the boundary conditions considerably, since
we now have to consider conditions in the plane y=0 only. At y=0, there will be jumps in
H and E across the surface S, the joint surface of the strips, having its normal vector in the
y-direction (n = ey). Denoting the jump across S by [[ ]], we have

[[E ×n]]= [[H ·n]]=0, [[E ·n]]=Qs, [[H ×n]]=−jp, (8)

where Qs and jp are surface charge and surface current density, respectively. For our purpose
Qs is irrelevant. The set of equations and boundary conditions formulated above for a set of
infinitely long strips allows a solution that is independent of the longitudinal z-direction. As
a consequence, the current jp has a component in the z-direction depending on x only, i.e.,

jp= jp(x)ez, x ∈ [ap, bp]. (9)

As a direct consequence of (9), we find that the only non-zero components of E and H are

{Ez, Hx, Hy}.
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From now on, we restrict ourselves to the upper half plane {(x, y) | y>0}, where the follow-
ing equations hold for Ez=E(x, y), Hx(y)=Hx(y)(x, y):

∂E

∂x
=−iµωHy,

∂E

∂y
= iµωHx, (10)

∂Hy

∂x
− ∂Hx

∂y
=0, (11)

together with the boundary conditions at y=0,

for x ∈S

E(x,0)= 1
2σh

j (x)− 1
2σh

js(x), Hx(x,0)=−1
2
j (x), (12)

for x /∈S
∂E

∂y
(x,0)=0, Hx(x,0)=0, (13)

where j (x)= jp(x), for x ∈ Sp. Here, S and Sp are the two-dimensional representations (the
cross-sections in the (x, y)-plane) of S and Sp. These conditions must still be complemented
by Sommerfeld’s radiation condition, which states that

∇E→0 , Hx(y)→0, for
√
x2 +y2 →∞. (14)

From the relations (10) and (11) it follows directly that Hx , Hy and E all satisfy the Laplace
equation in the half-space y > 0. For Hx this leads us to the following boundary-value
problem

�Hx(x, y)=0, on {(x, y) | y >0},

Hx(x,0)=−1
2
j (x), x ∈S,

(15)

Hx(x,0)=0, x /∈S,

Hx(x, y)→0,
√
x2 +y2 →∞.

The solution of this problem has the integral representation

Hx =− 1
2π

∫

S

j (ξ)
y

y2 + (x− ξ)2 dξ. (16)

From this result, the following expression for the y-component of the magnetic field can
be derived:

Hy = 1
2π

∫

S

j (ξ)
x− ξ

y2 + (x− ξ)2 dξ. (17)

We introduce a vector potential A defined by B=∇ ×A, such that ∇ ·B=0 is satisfied auto-
matically. From Faraday’s law then follows that the electric field must satisfy

E =−∂A
∂t

−∇	, (18)
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where 	 is a scalar potential. If we use the Coulomb gauge ∇ ·A =0, the equations in terms
of A and 	 turn into

∇2A =−µJ, (19)

∇2	=0. (20)

The scalar potential 	 has to be zero at infinity because of energy aspects, which leads to a
solution of 	 that is identically zero in IR3. The vector potential A can be determined directly
from (16) and (17), as will be shown later on. In the model, we prescribe a source current js ,
which induces extra currents, called eddy currents je. By doing so we compute the total cur-
rent on the conductors as

j (x)= j s(x)+ je(x). (21)

We choose the source current such that j s(x) is uniform on each strip and zero outside
the strips (x /∈S). Moreover, we assume that the strips are coupled in groups of one or more,
where each group is connected to a single source. This means that, for each group, j s(x) has
the same constant value on each strip of this group. For notational purposes, we assume that
we have L different groups consisting of one or more strips, total partial surface Sl such that

S= L∪
l=1

Sl .

On each group, we express j s(x) by characteristic functions ψl(x)=1[Sl ], l=1, . . . ,L that
are zero everywhere except on the strips of group Sl , where they have the value 1. Denoting
the constant value of j s(x) on Sl by Cl , we have that j s(x) can be written as

j s(x)=
L∑

l=1

Clψl(x). (22)

For the inner product of two characteristic functions ψl and ψl′ , where l, l′ ∈ {1, . . . ,L}, one
has

(ψl,ψl′)=
∫ ∞

−∞
ψl(x)ψl′(x) dx=Dlδll′ , (23)

where δll′ is is the Kronecker delta function, which is equal to one if l= l′ and zero if l 
= l′,
and Dl is the sum of the widths of all strips of group l.

To obtain a well-defined problem description, we still need L, extra relations to determine
the L, as yet unknown, constants C1, . . . ,CL. We require that the total current in each group
of strips is prescribed by

∫

Sl

j (x) dx=
∫ ∞

−∞
j (x)ψl(x) dx= Il , for l=1, . . . ,L. (24)

From now on, we describe the problem in terms of Az =A(x, y) instead of E(x, y), using
E(x, y)= iωA(x, y). Introducing a typical length scale D and a typical current density scale
j∗, we can write our equations in dimensionless form (without changing the notations), viz.

for y >0

∂A

∂x
=−Hy , ∂A

∂y
=Hx, (25)

∂Hy

∂x
− ∂Hx

∂y
=0, (26)
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for x ∈S

iA(x,0)= εj (x)− ε
L∑

l=1

clψl(x) , Hx(x,0)=−1
2
j (x), (27)

for x /∈S
∂A

∂y
(x,0)=0 , Hx(x,0)=0, (28)

and
∫ ∞

−∞
j (x)ψl(x) dx= Il

Dj∗ , (29)

where

ε= 1
2hσµωD

, cl = Cl

j∗ , j∗ =
∑L
l=1 Il∑L
l=1Dl

. (30)

Note that in dimensionless form (ψl,ψl′)= (Dl/D)δll′ .
For the scattered field, we can derive, on using (16) and (17) in (25), the following expres-

sion

A(x, y)=− 1
4π

∫

S

j (ξ) log
(
(x− ξ)2 +y2

)
dξ. (31)

By substituting this expression in (27), we arrive at the following integral equation for j (x):

1
2π

∫

S

j (ξ) log |x− ξ | dξ − iεj (x)=−iε
L∑

l=1

clψl(x), for x ∈S. (32)

This is a Fredholm integral equation of the second kind. The integral on the left-hand side
of (32) corresponds to the eddy current part, je(x), of the total current, j (x); see (21).

In the case of one strip, extending from x=−a to x=a, we choose D=a, and j∗ = I/2a.
We then obtain the following integral equation:

1
2π

1∫

−1

j (ξ) log |x− ξ | dξ − iεj (x)=C, for x ∈ [−1,1] , (33)

with the unicity condition, to determine the still unknown complex constant C,

1∫

−1

j (x) dx=2. (34)

In the next section, we shall present a general analysis of (33–34) and its analytical solution.
A general approach to tackling the integral Equation (32) for a system of N strips will be

presented in Section 4. There are many texts on the theory of Fredholm integral equations.
Among these, we note [21–24].
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3. General analysis for one strip

3.1. General analysis of a weakly singular integral equation

In this section, we show that the current distribution j (x) is twice differentiable inside the
strip and that its derivative has a logarithmic singularity in the edge points x=±1.
The current satisfies (33), which we write here as

(K− iε)ϕ=f, (35)

where K denotes the integral operator defined on the Hilbert space L2([−1,1]) of square inte-
grable functions on [−1,1], given by

(Kϕ)(x)= 1
2π

1∫

−1

ϕ(ξ) log |x− ξ | dξ, x ∈ [−1,1]. (36)

The weakly singular kernel log |x− ξ |, with −1<x, ξ <1, is square-integrable and symmetric.
Hence, K is a compact Hermitian operator and (35) has a unique solution for each right-hand
side f ∈L2([−1,1]). Moreover, if f is even/odd, the unicity of the solution of (35) implies that
ϕ is even/odd.

The subspace of all L2-differentiable functions in L2([−1,1]) is denoted by H2,1([−1,1]).
For ϕ ∈H2,1([−1,1]), its L2-derivative is denoted by Dϕ. With the inner product (see [25,
Appendix])

(ϕ,ψ)2,1 = (ϕ,ψ)L2 + (Dϕ,Dψ)L2 , (37)

the subspace H2,1([−1,1]) is a Hilbert space. The functions in H2,1([−1,1]) are continuous
and satisfy

max
x∈[−1,1]

|ϕ (x)|≤2
√

2 ‖ϕ‖2,1 . (38)

Similarly, H2,2([−1,1]) consists of all differentiable functions on [−1,1] for which the deriva-
tive belongs to H2,1([−1,1]).

For ϕ ∈L2([−1,1]), we have Kϕ ∈H2,1([−1,1]) and the L2-derivative of Kϕ is

(DKϕ)(x)= 1
2π

1∫
−
−1

ϕ(ξ)

x− ξ dξ, −1<x<1. (39)

Given f ∈H2,1(IR), (35) can be written as

(DKϕ)(x)= 1
2π

1∫
−
−1

ϕ(ξ)

x− ξ dξ = iεDϕ+Df, (40)

where ϕ ∈H2,1(IR), since K∈H2,1(IR), ϕ, f ∈H2,1(IR), and ϕ= (Kϕ−f )/iε .
A straightforward manipulation, based on integration by parts, results in the relation,

DKϕ=KDϕ+ 1
2π

[ϕ(−1) log(1+x)−ϕ(1) log(1−x)]. (41)
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We see that Kϕ ∈H2,2([−1,1]) and f ∈H2,2([−1,1]), if and only if ϕ(−1)=ϕ(1)=0.
Using (41) in (40), we obtain

Dϕ= 1
iε

[
KDϕ+ 1

2π
[ϕ(−1) log(1+x)−ϕ(1) log(1−x)]−Df

]
. (42)

Next, we shall derive the asymptotic behaviour of the solution ϕ at the edges x=±1. To
this end, we introduce the operator T from L2([−1,1]) into H2,1([−1,1]) by

(T ψ)(x)=
x∫

0

ψ(ξ) dξ. (43)

By applying T on (42), we conclude that

ϕ= 1
2π iε

[ϕ(1)(1−x) log(1−x)+ϕ(−1)(1+x) log(1+x)]+F, (44)

where

F = 1
2π iε

[(ϕ(1)−ϕ(−1))x+2π(T KDϕ−f )]+ c, (45)

with c a constant and F ∈H2,2([−1,1]).
From this, we infer that Equation (33) for the current distribution has a solution that is

even, j (x)= j (−x), and has the following edge behaviour

j (x)= 1
2π iε

j (1) [(1−x) log(1−x)+ (1+x) log(1+x)]+ F̃ , (46)

where F̃ ∈H2,2([−1,1]).

3.2. Solution in terms of Legendre polynomials

In Section 2 we derived the integral equation for the current distribution in one strip, while
in the previous section some qualitative results of the solution of this equation were given.
We have seen what kind of functions we can expect as a solution, the behaviour of the solu-
tion at the edges, and some symmetry properties. In this section, taking into account all these
properties, we present the solution in terms of Legendre polynomials; see [27, Chapter 8].

We start from the Fredholm equation of second kind for the complex current j , given by
(33), with the unicity condition (34). The latter condition uniquely determines the constant C.
From the preceding analysis we obtain that j satisfies (46) and that j is even. According
to (40),

1
2π

1∫
−
−1

j (ξ)

x− ξ dξ = iεj ′(x), x ∈ (−1,1) . (47)

In order to determine j, we expand j in terms of Legendre polynomials Pn, by writing

j (x)=
∞∑

k=0

JkP2k (x) , (48)

where we used that j is even.
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Using the condition (34), and the orthogonality of the Legendre polynomials, we obtain
J0 =1. With

Qn (x)= 1
2

1∫
−
−1

Pn (ξ)

x− ξ dξ, x ∈ [−1,1] , (49)

where the functions Qn, n=0,1,2, . . . , are Legendre functions of the second kind, the inte-
gral Equation (47) with (48) inserted into it, yields

∞∑

k=0

JkQ2k = iπε
∞∑

k=1

JkP
′
2k. (50)

Multiplying (50) by P2l−1(x), integrating the result with respect to x from x=−1 to 1, and
using the relations (see [27, Formula 8.14.8])

1∫

−1

Q2k (x)P2l−1 (x) dx= 1
(2l−2k−1) (k+ l) , (51)

and

1∫

−1

P ′
2k (x)P2l−1 (x) dx=

{
2, k≥ l,
0, k < l,

(52)

we arrive at

2π iε
∞∑

k=l
Jk −

∞∑

k=1

alkJk = 1
l (2l−1)

, (53)

where

alk = 1
(2l−2k−1) (k+ l) , k, l=1,2, . . . (54)

We conclude that the analytical expression of the solution for the sought current distribu-
tion j (x) in one strip can be presented by (48), where the coefficients Jk follow from the infi-
nite linear system of Equation (53). Note that here j (x) is the dimensionless current density;
to obtain its dimensional counterpart, we have to multiply the j (x) found here by j∗ = I/2a.

3.3. External magnetic field

In this section, we calculate the external magnetic field due to a current in a single infinitely
long strip. By (16) and (17) we represent the external magnetic field components Hx and Hy

as integrals involving j (x). To evaluate these representations, we first write

1
π

y

y2 + (x− ξ)2 = 1
2π i

(
1

ξ − z − 1
ξ − z̄

)
, (55)

and

− 1
π

x− ξ
y2 + (x− ξ)2 = 1

2π

(
1

ξ − z + 1
ξ − z̄

)
, (56)
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where z=x+ iy. Next, we define the linear mapping (Hilbert transformation)

Hj (z)= 1
2π i

1∫
−
−1

j (ξ)

z− ξ dξ, z∈C, Im z>0. (57)

Then, the components of the magnetic field can be presented in terms of Hj as

Hx = 1
2
((Hj)(z)− (Hj)(z̄)) (58)

and

Hy = i
2
((Hj) (z)+ (Hj) (z̄)) . (59)

From the expression (48) for the current, we obtain

Hj (z)=
∞∑

k=0

Jk

2π i

1∫
−
−1

P2k (ξ)

z− ξ dξ = 1
π i

∞∑

k=0

JkQ2k (z) , (60)

where we have used (49). Note that the function Qk (z) is analytic on C\ [−1,1]; so the map-
pings

(x, y) �−→Qk (x+ iy) and (x, y) �−→Qk (x− iy) (61)

are harmonic. Moreover, in the interval [−1,1], there is the jump relation (see [27, Formula
8.3.3])

1
π i

[Qk (x− i0)−Qk (x+ i0)]=Pk (x) , (62)

and, finally,

lim
|z|→∞

Qk (z)=0. (63)

Hence, the components of the magnetic field can be written as

Hx (x, y)= 1
2π i

∞∑

k=0

JkQ2k (x+ iy)− 1
2π i

∞∑

k=0

JkQ2k (x− iy) , (64)

and

Hy (x, y)= 1
2π

∞∑

k=0

JkQ2k (x+ iy)+ 1
2π

∞∑

k=0

JkQ2k (x− iy) . (65)

3.4. Resistance for one sheet

An important quantity of practical interest is the loss produced by the currents. Therefore,
also the Ohmic loss will be expressed in terms of the coefficients Jk. In a conducting body of
volume V , the Ohmic loss is given by

1
σ

∫

V

|J|2 dV.



392 T. Ulicevic et al.

For an infinitely long and thin sheet such as the one we consider here, the Ohmic loss P
per unit of length (in Watt/m) is found by replacing the integral over V by one over the
cross-sectional surface S and, moreover, by using for J

J = 1
2h

I

2a
j (x)ez,

where j (x) is dimensionless. This yields

P = I 2

8σha

1∫

−1

|j (x)|2 dx. (66)

Also, the power dissipated per unit length of the conductor can be expressed in terms of the
total current I and the resistance R per unit of length (R in �/m), as

P =RI 2. (67)

Combining (66) and (67), we get

R= 1
8σha

1∫

−1

|j (x)|2 dx. (68)

Using in the latter relation, as well as the expansion (48) and the orthogonality of Legendre
polynomials, we finally arrive at

R= 1
4σha

∞∑

k=0

|Jk|2
4k+1

. (69)

4. System of N strips

In this section, we shall present the solution of the integral Equation (32) subject to the extra
conditions (24). We consider a system of N parallel strips, divided in L groups of mutually

connected strips. Each group l, l ∈{1, . . . ,L}, occupies an area Sl , such that S= L∪
l=1

Sl .

For convenience, we write (32) in a short-hand notation,

Kj − iεj =−iε
L∑

l=1

clψl, (70)

where

Kj = (Kj)(x)= 1
2π

∫

S

j (ξ) log |x− ξ | dξ. (71)

We recall that (ψl,ψl′) = (Dl/D)δll′ , so that the projection Pj of j onto the linear span
lin({ψl | l=1,2, . . . ,L}) is given by (see [28, Formula 4.140])

Pj =
L∑

l=1

D

Dl
(j,ψl)ψl =

L∑

l=1

Ĩlψl, (72)

according to (29) and with Ĩl = Il/Dlj∗. Writing

j⊥ = j −Pj, (73)
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and applying the operation (I −P) to (70), we obtain

(I −P)Kj − iεj⊥ =0, (74)

as Pψl =ψl . With j according to (73), this yields

(I −P)Kj⊥ − iεj⊥ =−
L∑

l=1

Ĩl (I −P)Kψl. (75)

Note that at this point, we have eliminated the unknown coefficients cl in favour of the given
partial currents Il .

The unknown function is now j⊥, which we determine using the method of moments; see
[28]. We approximate j⊥ by a finite series of basis functions ϕm, where the functions ϕm form
an orthogonal set and are in the kernel, or null space, of P , i.e., Pϕm=0, or

(ϕm,ψl)=0, and (ϕm,ϕm′)=0 , for m 
=m′, (76)

for all l ∈{1, . . . ,L}, and all m.
In analogy with the preceding section, we choose Legendre polynomials for ϕm. However,

for a system of N strips, not necessarily of the same width, a scaling with respect to the inter-
val [−1,1], as was used in Section 3.2, is not possible. Therefore, in the case of N parallel
strips we have to introduce shifted and scaled Legendre polynomials φk,q, k= 1,2, . . . , q =
1,2, . . . ,N by

φk,q =Pk
(
x− sq
dq

)
, for x ∈ [aq, bq ], (77)

where sq = (
aq +bq

)
/2, dq = (

bq −aq
)
/2, q=1,2, . . . ,N . Moreover, φk,q =0, for x /∈ [aq, bq ].

The shifted and scaled Legendre polynomials are used to construct the basis functions. We
create a series expansion that is specific for each strip, according to

j⊥ =
K∑

k=1

N∑

q=1

αk,qφk,q +
N−L∑

q=1

α0,qφ0,q =
M∑

m=1

αmϕm(x). (78)

Here, for m=1, . . . ,N −L,

αm=α0,q , ϕm=φ0,q , m=q=1, . . . ,N −L, (79)

with φ0,q to be specified further on, whereas for m=N −L+1, . . . ,M= (K+1)N −L,

αm=αk,q, ϕm=φk,q , m=q+kN −L, (80)

for k=1, . . . ,K, and q=1, . . . ,N . Here, K denotes the number of degrees of Legendre func-
tions that is included, and M is the total number of basis functions. The basis functions must
be orthogonal with respect to each other as well as to the functions ψl . For m∈ [N−L+1,M]
these conditions are satisfied because then (m=q+kN −L, n=q ′ +k′N −L)

(ϕm,ϕn)=
∫

S

φk,q(x)φk′,q ′(x) dx= 2dq
2k+1

δkk′ δqq ′ , (81)

and

(ϕm,ψl)=
∫

S

φk,q(x)ψl(x) dx=0, (82)

for q=1, . . . ,N , l=1, . . . ,L.
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According to (73), the total current j is approximated partly by L piecewise constant func-
tions ψl . So, for j⊥, N −L constant functions are left that can differentiate the current dis-
tributions in the L groups. This explains why we split off the sum with the N −L terms in
(78). We return to (75) into which we insert (78), to obtain

M∑

m=1

αm(I −P)Kϕm− iε
M∑

m=1

αmϕm=−
L∑

l=1

Ĩl (I −P)Kψl. (83)

Taking the inner product of this equation with ϕn, we find

M∑

m=1

αm((I −P)Kϕm,ϕn)− iε
M∑

m=1

αm(ϕm,ϕn)=−
L∑

l=1

Ĩl ((I −P)Kψl, ϕn). (84)

Since (I −P) is a self-adjoint operator, and as (I −P)ϕn=ϕn, this equation reduces to

M∑

m=1

αm(Kϕm,ϕn)− iε
M∑

m=1

αm(ϕm,ϕn)=−
L∑

l=1

Ĩl (Kψl, ϕn). (85)

From this equation, the unknown coefficients αm can be determined.
For convenience, we write (85) in matrix formulation as

(A − iεG)a =−Bf, (86)

where a = (α1, . . . , αM)
T and f = (Ĩ1, . . . , ĨL)

T are an M-vector and an L-vector, respectively,
while A and G are symmetric M ×M-matrices and B is an M ×L-matrix, defined by their
entries

Anm= (ϕn,Kϕm), Gnm= (ϕn, ϕm), Bnl = (ϕn,Kψl). (87)

We then have successively:
1. For m=q+kN −L>N −L, and n=q ′ +k′N −L>N −L,

Anm= 1
2π

∫ bq′

aq′
φk′,q ′(x)

∫ bq

aq

φk,q(ξ) log |x− ξ | dξ dx

= dq ′dq
2π

∫ 1

−1

∫ 1

−1
Pk′(x)Pk(ξ) log |dq ′x−dqξ + sq ′ − sq | dξ dx, (88)

where we have used the substitutions

x→dq ′x+ sq ′ , and ξ→dqξ + sq .

The kernel of this integral has a logarithmic singularity if and only if q=q ′; otherwise the
integrand is regular, and the integral can simply be calculated numerically. When q= q ′,
we obtain

Anm= d2
q

2π

∫ 1

−1

∫ 1

−1
Pk′(x)Pk(ξ) log(dq |x− ξ |) dξ dx

=






8d2
q

2π(k+k′)(k+k′ +2)[(k−k′)2 −1]
, if k+k′ even,

0 , if k+k′ odd. (89)
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If k=0, or m=q≤N−L, we have ϕm=φ0,q , which is either constant on a strip or zero.
We evaluate Anm for the example of ϕm=1[aq ,bq ]. Note that φ0,q is a linear combination
of characteristic functions, so the separate contributions can be superposed with the cor-
responding coefficients (as explained before). We obtain for Anm:

dq ′dq
2π

∫ 1

−1

∫ 1

−1
Pk′(x) log |dq ′x−dqξ + sq ′ − sq | dξ dx. (90)

For q 
=q ′, the integrand is regular and the integral will be calculated numerically; if q=
q ′, we use the analytical result

d2
q

2π

∫ 1

−1

∫ 1

−1
Pk′(x) log(dq |x− ξ |) dξ dx

(91)

=






8d2
q

2πk′(k′ +2)(k′2 −1)
, if k′ even,

0, if k′ odd,
d2
q

2π
(4 log 2+4 log dq −6), if k′ =0. (92)

2. The Gram-matrix G is diagonal due to the orthogonality of the basis functions ϕm on S.
For m>N −L, we have, for k=1, . . . ,K,

Gmm= (ϕm,ϕm)=
∫ bq

aq

φ2
k,q(x) dx=dq

∫ 1

−1
P 2
k (x) dx= 2dq

2k+1
. (93)

For m=n≤N −L, the integrand of Gmm is constant and the evaluation of the integral
trivial.

3. We evaluate the matrix B for the example of ψl = 1[aq ,bq ] (if ψl is a linear combination
of characteristic functions, the separate contributions can be superposed directly) and for
n>N −L, to obtain

Bnl = (Kψl, ϕn)= 1
2π

∫ bq′

aq′
φk′,q ′(x)

∫ bq

aq

1[aq ,bq ] log |x− ξ | dξ dx

= dq ′dq
2π

∫ 1

−1

∫ 1

−1
Pk′(x) log |dq ′x−dqξ + sq ′ − sq | dξ dx. (94)

This integral is identical to the one in (90).

5. Numerical results

In this section, we present the results of the numerical simulations of four different configura-
tions. First, we consider one strip. Second, we consider three examples of systems consisting
of three strips:
1. Three strips with each strip connected to a separate source.
2. Three strips connected to one and the same source.
3. Three strips, the first and second of which are connected to one source, and the third to

another.
In all situations, we consider strips of the same width and thickness, and of the same material.
The values are shown in Table 1. Parameters that vary are the distances between the strips
and the frequencies.
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Figure 2. Amplitude of the dimensionless cur-
rent distribution of one strip, for four frequen-
cies: ω = 100(line), 400(dotted), 700(dashed),
1000(dash-dotted) rad/s.
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Figure 3. Phase difference of the dimensionless current
distribution of one strip, for four frequencies: ω =
100(line), 400(dotted), 700(dashed), 1000(dash-dotted)
rad/s.

Table 1. Values of geometrical and material parameters.

Symbol Name Value

2h Thickness of strip 2·5×10−3 m
2D Width of strip 4·0×10−2 m
σ Electric conductivity 5·8×107�−1m−1

µ Magnetic permeability 4π ×10−7 Hm−1

5.1. One strip

We consider the case of one strip positioned at [−D,D]. The total current flowing through
the strip is prescribed. The current is expanded in terms of Legendre polynomials, as shown
in (48), and the coefficients are calculated from (53).

Figure 2 shows the amplitude of the (dimensionless) current distribution for the four
frequencies ω= 100,400,700,1000 rad/s. We observe that the current at the edges is higher
than in the centre. This edge-effect, which is due to the self-inductance of the strip, becomes
stronger as the frequency increases. For low frequencies, the current is distributed almost uni-
formly, whereas for high frequencies, the current is more concentrated at the edges. The inte-
grated current is always equal to 2, in accordance with (34).

To obtain the time-dependent result for the currents, we multiply the amplitude of the
current by e−iωt . Simulating this case, we observe a phase difference in the system. In
Figure 3, the phase difference is shown as a function of x/D, for the four frequencies ω=
100,400,700,1000 rad/s. We see that for each frequency only two points are in phase with the
source (although the figures seem to suggest the opposite, these points do not coincide for all
frequencies). The currents at the edges are ahead in phase with respect to the source, whereas
currents at the centre are behind in phase. The phase difference increases with frequency.



Current distribution 397

0 1 2 3–1–2–3

0.8

1

1.2

1.4

1.6

1.8

2

|j |

x/D

Figure 4. Amplitude of the current distribution of
a set of three strips forming three groups, for four
frequencies: ω = 100(line), 400(dotted), 700(dashed),
1000(dash-dotted) rad/s.

d

Figure 5. Relative value of the current at the points
x = a1, b1, a2 for sets of three strips forming three
groups, plotted against the distance d between two
neighbouring strips (logarithmic scale).

5.2. Configuration of three strips

We observed in the previous section that an edge-effect occurs in one strip due to the self-
inductance of the strip. In a configuration of more strips, mutual inductances also play a role.
In this section, we consider three situations for a set of three strips: forming three groups, one
group and two groups, respectively. We investigate how the current distribution and, specifi-
cally, the edge-effect, depend on the frequencies and on the distance between the strips.

5.2.1. Three strips forming three groups
We consider the case of a strip, positioned at [−D,D], accompanied on both sides by a strip
of the same width, both at a distance d, where for this case d = 0·25 (dimensionless). The
currents through the three strips are driven by three separate sources, so that no Legendre
functions of degree zero are needed here. On each strip the same total current is prescribed.

In Figure 4, the amplitude of the current distribution for the set of three strips is shown,
for the four frequencies ω = 100,400,700,1000 rad/s. We again observe the edge-effects for
each strip, but the shapes are quite different: the system tries to enforce a global edge-effect.
Note that higher frequencies cause stronger edge-effects. Moreover, it is clear that the pre-
scribed total current is the same through all three strips.

Next, we investigate the effect of the distance between the strips on the edge-effect. To this
end, we vary the distance between the strips, keeping the widths of the strips the same, and
keeping the frequency fixed at ω=700 rad/s. We simulate the current distribution for a number
of distances d in the range [10−2,102], and register the relative values of the currents at the
points x=a1, b1 and a2; see Figure 1. The result is shown in Figure 5, where on the horizontal
axis a logarithmic scale for d has been used. Note that for small distances d the value of the
current in b1 tends to the value of the current in a2. For larger distances d, all values tend to
0·135, which is the same value as at the edge of one strip, see Figure 2 (absolute value is 1·135).
Hence, the distance has become too large to ‘feel’ the presence of another strip.

5.2.2. Three strips forming one group
Next, we consider a set of three strips connected to a single source. In this case, the total
current through the whole set of three strips is prescribed (and equal to three times the
prescribed current for one strip in the preceding case). This implies that the individual total
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Figure 6. Amplitude of the current distribution of a set of three strips forming two groups, for four frequencies: ω=
100(line), 400(dotted), 700(dashed), 1000(dash-dotted) rad/s.

current through each strip is free, as can be seen from Figure 6. This figure shows the current
distributions for four frequencies ω=100,400,700,1000 rad/s. The distance between the strips
is the same as for the case depicted in Figure 4.

We observe that the total current through the central strip is smaller than that through
the two side strips. This effect is stronger for higher frequencies. Moreover, the edge-effects at
the outer edges of the set are amplified with respect to the preceding case. This can be con-
cluded from a comparison of Figure 6 with Figure 4. As before, the edge-effect increases with
increasing frequencies.

5.2.3. Three strips forming two groups
As a third and final example, we consider a set of three strips connected to two sources. The
configuration is the same as in the preceding two subsections. The first two strips are con-
nected to a single source, the prescribed total current being equal to twice the total current
through one strip for the first case. The third strip is connected to a separate source and the
prescribed total current is here equal to the total current through one strip for the first case.

Now the situation is no longer symmetric, as can be clearly seen from Figure 7. In this figure,
the current distributions are depicted for the four frequencies ω=100,400,700,1000 rad/s. Here
the edge-effect is strongest at the outer edge of the first strip, and this edge-effect is stronger
than in the preceding two cases. Again, the edge-effect increases with increasing frequency.

6. Conclusions

In this article, the current distribution in a parallel set of conducting strips has been investi-
gated. We assumed that the strips are negligibly thin and infinitely long, that all the media
are non-polarizable and non-magnetizable, and that the electric conductivity σ is constant
throughout the strips. The current is driven by a source current, which is time-harmonic, with
a low frequency (of the order of 103 Hz). Due to the restricted frequency range, a quasi-static
approach can be applied. For the uniqueness of the solution, the current through each group
of mutually connected strips is prescribed.

It has been shown that the current only has a component in the longitudinal z-direction
and only depends on the transversal direction x. Moreover, the current distribution must
satisfy a Fredholm integral equation of the second kind, containing a logarithmic kernel
function. This integral equation has been solved by using a series expansion of the current
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Figure 7. Amplitude of the current distribution of a set of three strips forming, for four frequencies: ω= 100(line),
400(dotted), 700(dashed), 1000(dash-dotted) rad/s.

distribution in terms of Legendre polynomials (the basis functions). The method of moments
has been applied with the same basis functions used as test functions.

For a single strip the current distribution could be determined completely analytically, and
consequently also the magnetic field, the resistance, and the Ohmic loss. The results showed
the occurrence of edge-effects, and how these effects become stronger with increasing fre-
quency. The time dependence resulted in a phase difference between the current and the
applied voltage; this phase difference increases with frequency. The behaviour of the current
at the edges of the strip has been determined explicitly, and it has been shown that its deriv-
ative has a logarithmic singularity at the edges.

Also in a system of a finite number of strips, the Legendre polynomials are useful to
determine the current distribution by analytical means. The interaction of two different strips
yielded a regular integral, which could easily be computed numerically. Not only edge-effects
within one strip were found, but also a global edge-effect in the whole system, depending on
the distances between the strips and the frequency.

The model we considered can be extended with respect to the following aspects:
• In the existing model we assumed that the material properties of all strips are the

same. This assumption is somehow redundant: different material properties can easily be
included in this model.

• The fields in this model are time-harmonic. By superposition, we can handle a more gen-
eral time-dependence after expanding this dependence in Fourier modes.

• Instead of infinitely long strips lying in one plane, we can consider sets of circular loops of
strips placed on a circular cylinder. This is more in conformity with the real situation of
a gradient coil in an MRI scanner. One of the questions that arises then is how the cur-
vature of the strips affects the current distribution. Moreover, in this case it is possible to
calculate the magnetic field inside the cylinder, which is an important aspect with regard to
an adequate performance of the gradient coil. The current distribution in the width direc-
tion of the sheets can again be expressed in terms of Legendre polynomials. This will be
the subject of a forthcoming paper [4].
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